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Abstract

Newton-Krylov methods and Krylov-Schwarz (domain decomposition) methods have be-

gun to become established in computational fluid dynamics (CFD) over the past decade.

The former employ a Krylov method inside of Newton's method in a Jacobian-free man-

ner, through directional differencing. The latter employ an overlapping Schwarz domain

decomposition to derive a preconditioner for the Krylov accelerator that relies primarily on

local information, for data-parallel concurrency. The)." may be composed as Newton-Krylov-

Schwarz (NKS) methods, which seem particularly well suited for solving nonlinear elliptic

systems in high-latency, distributed-memory environments. We give a brief description of

this family of algorithms, with an emphasis on domain decomposition iterative aspects.

We then describe numerical simulations with Newton-Krylov-Schwarz methods on aerody-

namics applications emphasizing comparisons with a standard defect-correction approach,

subdomain preconditioner consistency, subdomain preconditioner quality, and the effect of

a coarse grid.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the authors were in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





1 INTRODUCTION

Several trends contribute to the importance of parallel implicit algorithms in CFD. Multi-

disciplinary analysis and optimization put a premium on the ability of algorithms to achieve

low residual solutions rapidly, since analysis codes for individual components are typically

solved iteratively and their results are often differenced for sensitivities. Problems possessing

multiple scales provide the classical motivation for implicit algorithms and arise frequently

in locally adaptive contexts or in dynamical contexts with multiple time scales, such as aero-

elasticity. Meanwhile, the never slackening demand for resolution and prompt turnaround

forces consideration of parallelism, and, for cost effectiveness, particularly parallelism of the

high-latency, low-bandwidth variety represented by workstation clusters.

A Newton-Krylov-Schwarz (NKS) method combines a Newton-Krylov (NK) method such

as nonlinear GMRES [2], with a Krylov-Schwarz (KS) method, such as additive Schwarz [8].

The key linkage is provided by the Krylov method, of which the restarted form of GMRES [21]

is perhaps the best-known example for nonselfadjoint problems. From a computational point

of view, the most important characteristic of a Krylov method for the lil_ear system Au = f

is that information about the matrix A needs to be accessed only in the form of matrix-

vector products in a small number (relative to the dimension of the matrix) of carefully

chosen directions. NK methods are suited for nonlinear problems in which it is unreasonable

to compute or store a true 3acobian. However, if the Jacobian A is ill-conditioned, the

Krylov method will require an unacceptably large number of iterations. The system can

be transformed into the equivalent form B_IAB_lv = Bill, where v = B2u, through the

action of left and right preconditioners, B1 and B_. It is in the choice of preconditioning

where the battle for low computational cost and scalable parallelism is usually won or lost.

In KS methods, the preconditioning is introduced on a subdomain-by-subdomain basis,

which provides good data locality for parallel implementations over a range of granularities,

and allows significant architectural adaptivity. The emphasis today is on operation count

complexity and parallel efficiency, which means that Schwarz is usually employed with very

modest subdomain overlap and in a two-level form, in which a small global problem is solved

together with the local subdomain problems at each iteration. Mathematically, if Au = f

arises as the linearized correction step of a discretized PDE computation, Schwarz operates

by:

1. Decomposing the space of the solution u: /.4 = _]k//k;

2. Finding the restriction of A to each b/k: Ak = RkAR_, for some restriction operators

Rk " b/_ Uk and extension operators Rkr "Uk _/g;



3. Forming B -1 from the A[ 1, where the inverse of Ak is well defined within the k th

subspace.

In Schwarz-style domain decomposition, the subspace/A'k corresponding to subdomain k is

the span of nodal basis or other expansion functions with support over the subdomain. A

practical Schwarz preconditioner is

B -1- _ Rr(ftk)-IRk, (1)
k

where fi, k is a convenient approximation to Ak - RkAR_. In this paper, fi-k is usually an

incomplete LU (ILU) factorization of Ak, with modest fill permitted. For k = 1, 2,..., the

Rk and R[ are simply gather and scatter operators, respectively, one for each subdomain

with small overlap between the subdomains. For an optional k = 0 term corresponding to the

coarse space, R0 represents a full-weighting restriction operator in the sense of multigrid, and

/_ is the corresponding prolongation. We never actually assemble either A or B -1 globally.

Rather, when their action on a vector is needed, a processor governing each subdomain

executes local operations, after receiving a thin buffer of data required from its neighbors

to complete stencil operations on the boundary of the subdomain. For the assembly and

solution of the coarse-grid component of the preconditioner, data exchanges further than

nearest neighbor must generally occur.

The two-level form of additive Schwarz can be proved to possess mesh-independent and

granularity-independent condition number in elliptically dominated problems, including non-

symmetric and indefinite problems, when the coarse global and fine local operators are solved

with sufficient precision. Ref. [4] contains several examples demonstrating this optimality

when exact subdomain solvers are used, and thus shows their superiority to global incom-

plete LU factorizations. Architecturally adaptive strategies for dealing with the coarse-grid

component of the preconditioner are outlined in [9]. The collection [16] is representative of

the state of the art of algorithms, applications, and parallel implementations.

The NKS technique is compared in this paper against a defect correction algorithm

common to many implicit codes. The objective of either algorithm is to solve the steady-
Ou

state conservation equations f(u) = 0 through the pseudo-transient form 5i- + f(u) = O,

where the time derivative is approximated by backwards differencing, with a time step that

ultimately approaches infinity. A standard defect correction approach employs an accurate

right-hand side residual discretization, fhigh(U), and a convenient left-hand side Jacobian

approximation, J_o_(u), based on a low-accuracy residual fto_(U), to compute a sequence

of corrections, 6u =_ u n+l - u n. Computational short-cuts are employed in the creation of

the left-hand side matrix, which may, for instance, be stabilized by a degree of first-order

upwinding that would not be acceptable in the discretization of the residual itself.



The so-called "defect" is ,[high(U)- flow(u), and the nonlinear defect correction scheme

to drive faigh(u) to zero is to solve approximately for u TM in

n+l n
ftow(U )= f,o_(u )- ,fhigh(U'_), (2)

which may be linearized as

.,,,o_( , n )& = --.fh_gh (u _ ). (3)

In the case of pseudo-transient computations, the approximate Jacobian Jtow is based on a

low-accuracy residual:

D Of, o,,, (4)
Jt°_' = 5--7+ 0---7-'

where D is a scaling matrix. It is required either to solve with Jto_,, itself, or with some

further algebraic or parallel approximation, J_ow- Inconsistency between the left- and right-

hand sides prevents the use of large time steps, St, and prevents (3) from being a true Newton

method.

A Newton-Krylov approach employs a (nearly) consistent left-hand side obtained by

directionally differencing the actual residual, fmgh:

Jhigh (u _ ) 5u = -- fhigh (U _ ), (5)

in which the action of Jhigh on a vector is obtained through directional differencing, for

instance,
1

J_igh(u'_)v ._ -_ [fh_gh(u _ + by)- fh,gh(un)], (6)

where h is a small parameter. The operators on both sides of (5) are based on consistent

high-order discretizations; hence time steps can be advanced to values as large as linear

conditioning permits, recovering a true Newton method in the limit.

In practice, the convergence of the method is sensitive to the choice of h in (6), which

is not entirely trivial. When u and v are comparably scaled, it should ideally sit near the

square-root of the machine unit roundoff, ¢X/'2--_a_h,or around 10-r-10 -s in 64-bit precision.

Smaller values improve the Taylor approximation upon which (6) is based. Larger values

preserve more significant digits when the perturbed residuals on the right-hand side of (6)

are differenced in finite precision. In a nondimensionalized formulation, the elements of u '_ in

(6) will have an RMS of approximately unity, hut the elements of v will have an RMS smaller

than unity by a factor of x/-n, where n is the dimension of the discrete unknown vector, since

GMRES calls the matrix-vector evaluation routine with I[vll: = 1. We therefore set h to

be v/n.¢m:¢h. When less is known about the scaling of u n and v, a reasonable choice is

v)/llvll with guard code to set h = _ if Ilvll is too small. For a fuller



discussion,see[2]. For numericalexperimentsdemonstratingthe importance of the relative

scalingof h in the CFD context, see [17, 20].

Preconditioning (5) by Jl0_,, for instance on the left, as in

(2to_)-'J_,gh(_n) e_ = --(2to_)-lfh;gh(Un), (7)

shifts the inconsistency from the nonlinear to the linear aspects of the problem. This should

be contrasted with the customary preconditioned form of (3),

( Jlow)-l.]tow(U n) _?.l -_- --( Jlow)-l Aigh(Iln). (8)

At this level of abstraction, it is not clear which is better -- many nonlinear steps with cheap

subiterations (8), or a few nonlinear steps with expensive subiterations (7). Execution time

comparisons are more practical arbiters than are rates of convergence for the steady-state

residual norm, but running times are sensitive to parametric tuning as well as to architectural

parameters. We present a comparison of (7) and (8) in Section 4.

A more comprehensive set of comparisons of this type, comparing (7), (8), and

(L_h )-1Jh_h(_") e_ = --(3h,gh)-' A_._(u") (9)

may be found in [13]. Of course, (9) relies on possessing the full high-order Jacobian, and is

not a matrix-free method.

We might mislead if we closed this section while failing to emphasize the importance

of a globalization strategy when using any of the methods (7-9). Pseudo-transient con-

tinuation is usually recommended when a Newton-like method is used on flow problems in

primitive variables. In such cases, the steady-state nonlinear residual norm should not be

expected to decrease monotonically, and step-selection strategies should not be geared to

monotonic decrease. Potential- or streamfunction-based formulations can more confidently

be posed directly as steady-state problems, but in this case damping strategies for )_n in

u TM = u '_ + )_nSu may be critical to convergence. Strategies for )_'_ that provide as a min-

imum that II/(u"+l)l[ _< IIf(u_)ll may need to be supplemented by feasibility checks on

the components of u TM and/or a strategy that prevents spuriously large (though feasible)

fluctuations in the components. In addition, artificial continuation parameters, such as up-

winding strength, may enhance the convergence of globally divergent or slowly convergent

iterations with near-discontinuities in the solution. For transonic potential computations,

we have found invaluable the practical advice on "viscosity damping" in Section 8 of [25].



2 PARALLEL SCALABILITY OF

KRYLOV-SCHWARZ

Practical scalable parallelism is one of the major motivations for research on and implemen-

tation of domain decomposition methods in CFD, the operative buzzwords being "faster,

bigger, and cheaper." Though it would be premature to attempt to draw conclusions about

the optimal Mgorithm/architecture combination for a given CFD analysis, we offer some

experimental evidence for the excellent scalability of Krylov-Schwarz methods on a simple

problem for which it is relatively easy to isolate the factors that trade off against each other

in any such study. Without digressing into the refined nomenclature of scability analysis [12],

we loosely call an algorithm/architecture combination "scalable" if its parallel efficiency is

constant asymptotically, in any of several coordinated limits of discrete problem size n and

parallel granularity p.

For an iterative numerical method, in which the total execution time T(n,p) is the

product of an iteration count I(n, p) with an average cost-per-iteration C(n,p), it is useful

to separate the parallel efficiency into two factors: numerical efficiency and implementation

efficiency. Numerical efficiency r]_ measures the degradation of the convergence rate as the

problem is scaled, and implementation efficiency 7/,- measures the degradation in the cost

per iteration as the problem is scaled. For instance, we may take r/_ - I(n, 1)/I(n,p) and

rl_ =_ C(n, 1)/[p • C(n,p)]. The numerical efficiency is usually very difficult to predict for a

nonlinear problem, particularly when refining the grid (increasing n) resolves new physics.

However, for certain domain decomposition methods applied to model linear problems with

smooth solutions, the relative numerical efficiency I(nl,pl)/I(n2,p2), with p2 > pl and

nl/pl = n2/p_, can be proved to be 100% asymptotically.

The proof relies on the link between the rate of convergence of Krylov methods and the

condition number of the (preconditioned) operator B-1A, and on the link between the con-

dition number and the extremal eigenvalues in the symmetric case, which can be estimated

by Rayleigh quotients. Upper and lower bounds on the condition number of B-1A may be

constructed that are independent of the mesh cell diameter h and the subdomain diameter

H, or that depend only upon their ratio. In turn, h and H can be inversely related to n

and p in simple problems. The theory, which has evolved over a decade to cover nonsmooth,

nonsymmetric and indefinite problems, as well as nonnested spaces, is digested among other

places in [7] and [22]. Two such numerically optimal methods for the scalar self-adjoint

elliptic problem are the two-level additive Schwarz method [8] and BPS-I [1], which is a

wire-basket (Schur complement-based) method. Before presenting parallel CFD results, we

illustrate the performance achievable by such methods on contemporary parallel systems.



Table 1: Fixed-sizescalability results- Poissonproblem

# grid cells # proc. # iter. seconds sec./iter.
262,144
262,144
262,144
262,144

1
4

16
64

1" 183.5 183.5
8 325.7 40.7

12 96.7 8.1
12 17.6 1.5

Table 2: Fixed-memory-per-nodescalability results - Poisson

# grid cells # proc. # iter. seconds sec./iter.
16,384
65,536

262,144
1,048,576

1
4

16
64

1" 8.75 8.75
7 58.4 8.34

12 96.7 8.06
11 91.2 8.29

problem

Implementation efficiencieshave improvedsubstantially sincewe conductedour first such
study in 1985.

A message-passingcodefor the Poissonproblemon a unit squaredescribedin [1.5]was

convertedto MPI [18] and ported to severalmachines. With convergencedefinedas five

orders of magnitude reduction in (unpreconditioned) residual, as in [15], we tested both
fixed-sizescalability and fixed-memory-per-nodescalability on an Intel Paragonwith 1, 4,

16,or 64subdomains,with onesubdomainperprocessor.The resultsfor afixed-size.512x512

grid are shownin Table 1. Table 2 is basedon a problemsize that growsfrom 16K to 1M
unknowns,with a 128x 128subdomain problem on every processor. (The third row is

commonto both tables.)
On eachsubdomain,a direct FFT-basedmethod is employed,sothat only oneiteration

is required in the uni-processorcase. Asymptotically, approximately 12 iterations are re-

quired, independentof the granularity. As seenin the column "sec./iter." in Table 2, the

implementationefficiencyis near perfect in this granularity range. Problemscan be solved
in constant time asresolutionand processingpowerare increasedin proportion. (We expect

implementation efficiencyto degradeeventually at higher granularity, due to a sequential
bottleneck in the coarse-gridpart of the preconditioner.) Consultingthe "sec./iter." column

of Table 1, we note a super-unitary implementationefficiency- as p increases by a factor

of 4. runtime decreases by more than a factor of 4. This is attributable to the cacheing or

paging advantages of domain-based array blocking, which are clearly more important than

communication effects in this range of n and p.
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Table3: Inter-architecturecomparison- Poissonproblem

Machine # proc. seconds
IBM SP2 16 65.2

Intel Paragon 64 91.2
SPARC Cluster 16 124.5

In general CFD applications, finding a cost-effective coarse-grid operator is not straight-

forward, and one is often resigned to a Schwarz-preconditioned operator that deteriorates

in numerical efficiency as the granularity of the decomposition increases. In such cases,

optimizing execution time as a function of granularity is difficult, apart from numerical

experimentation.

The largest problem solved on the Paragon (a grid of 1024 x 1024) was also run on 16

nodes of an IBM SP2 and on 16 SPARCstations connected by Ethernet (during a relatively

quiescent period of the CPUs and the network). The overall runtime results are shown in

Table 3. It is apparent that large memory-per-node workstations on an Ethernet are com-

petitive with more expensive machines built around proprietary dedicated-link interconnects

(a mesh for the Paragon, a multi-stage bi-directional switch for the SP2). This is due to the

relatively small communication-to-computation ratio for Krylov-Schwarz methods, and is

encouraging for cost-effective large-scale CFD computations, at least for dedicated clusters.

Parallel workstation cluster implementations [6] of structured-grid Euler problems reveal the

vulnerability of highly synchronous algorithms, including Krylov methods with their fre-

quent inner product calls, to a non-dedicated environment. The other three main sources of

communication inefficiency in parallel algorithms, namely load imbalance, latency, and finite

bandwidth, are believed to impose much less serious limits on the number of workstations

that can be clustered together to solve PDEs than frequent synchronization of non-dedicated

resources.

3 AERODYNAMICS APPLICATIONS

In this section, we present parallel numerical results for two different formulations of invis-

cid, subsonic compressible external flow over two-dimensional airfoils using Newton-Krylov-

Schwarz. The formulation with greater fidelity to the flow physics is the set of Euler equa-

tions:

v. (p,,) = o (lO)

v.(pvv+pI) = o (11)



2 7.((pe+p)v) = 0 (12)

where p is the fluid density, v the velocity, p the pressure, and e the specific total energy,

together with the ideal gas law, p = p(^/- 1)(e - 1v]2/2), where "), is the ratio of specific

heats.

Under additional restrictive assumptions of irrotationality (v = V(I)) and isentropy

(V(p/p y) = 0), one can derive [11] a scalar equation for the velocity potential (I}:

v.(pv¢) =0. (a3)

We report on a model computation based on (13), which has the advantage of being simple

in structure, and hence relatively easy to test algorithmic varieties upon. We then report on

a computation based on a state-of-the-art unstructured grid solver for (10-12).

3.1 Full Potential Flow

A nonlinear full potential code has been built as a "laboratory" for parallel algorithms for

nonlinear elliptic problems. A two-level Schwarz preconditioner was implemented on top of

an early version of the PETSc [10] library, offering variable-fill incomplete factorization, a

variety of subdomain preconditionings, variable subdomain overlap, and a coarse grid of vari-

able density. The coarse grid is not necessarily nested in the underlying decomposition into

subdomains, which would be an impractical restriction in real world problems with adap-

tively refined meshes. Full details may be found in [5]; we summarize some representative

trends.

Consider the scalar nonlinear BVP

v. (p(llV_ll)v_) = o,

where 1

q:)-22@ {-_-1 )p=p_ 1+ ML(1-qg o) ,

and where q - llvo]I, m_ - q_/a_ is the free-stream Mach number. Boundary conditions

of Neumann or Dirichlet type are derived from inviscid boundary conditions for the velocity.

The simplest possible problem of aerodynamic interest is a thin nonlifting symmetric airfoil

at zero angle of attack. The airfoil lies along the x-axis, where its shape is parameterized

by f -- y(z). So-called transpiration boundary conditions permit a uniform grid to be em-

ployed on a rectilinear domain. A complete set of boundary conditions, adequate for testing

the nonlinear algebraic solver, if not for extracting accurate results about the underlying

continuous problem, is:
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• Upstream and far field: _5= q_ • x,

• Downstream: O,_ = q_,

• Symmetry: O,r_ = 0,

• On parameterized airfoil (y = f(x)): O,n = -q_f'(x).

See [25], which motivates our present study, for a more refined treatment of boundary con-

ditions.

We study convergence rate and parallel efficiency as functions of the accuracy of the

subdomain solvers, the overlap of the subdomains, the density of the coarse grid component

of the preconditioner, and the granularity of the decomposition. All tests presented below

are on a uniform grid of 250K unknowns (512 x 512) for flow over a NACA0012 airfoil at a

free-stream Math number of 0.5. In this problem, it is never necessary to use pseudo-time-

stepping to reach the domain of convergence of Newton's method. The initial iterate is the

simple uniform flow O(x, y) = f_o q__dx.

Each of Tables 4 through 6 examines the sensitivity of the convergence to a single pre-

conditioner parameter with all others controlled. The decomposition of the domain into

eight rectangular subdomains is also controlled. The total number of outer Newton steps,

the accumulated number of inner GMRES steps, and the overall running time of the parallel

computation are tabulated.

Table 4 shows the effect of varying the level of fill k in ILU(k). As k varies from 0 to the

full discrete dimension of the local Jacobian matrix, the subdomain solves gain increasing

exactness. However, there is a law of diminishing returns in convergence rate, and overall

execution time actually increases after a minimum, as the cost per iteration begins to rise

more rapidly than the number of iterations falls. It has been observed in other contexts

for the same full potential equation [24] that Schwarz methods are forgiving of inexactness

in the individual subdomain solves. Furthermore_ a factorization with a fixed level of fill is

increasingly accurate as the subdomain over which it is defined gets smaller. Thus, for fine-

grained computations, it is not cost-effective to work too hard on the individual subdomains.

In this table, the overlap is fixed at 3h and the coarse grid is 4 x 5 -- fewer than one coarse-

grid vertex for every 10,000 fine-grid vertices.

Table 5 shows the effect of varying the overlap between subdomains. The ovlp listed is

the distance that each subdomain is extended into its neighbors; hence the overall zone of

overlap is twice as wide. As overlap varies from one mesh cell diameter, h, to roughly half the

subdomain diameter, convergence rate improves. (For additive methods, too much overlap

can lead to deteriorating condition number, however.) Even in the regime of monotonically



Table 4: Effect of preconditionerlevelof fill - Full Potential problem

k 0 1 2 3 4 5

Newton 11 7 6 5 5 5

GMRES 494 277 222 169 167 166

Time 891.44 512.16 417.37 325.01 327.30 332.86

Table 5: Effect of subdomain overlap - Full Potential problem

ovtp 1 2 3 4 5

Newton 5 5 5 5 5

GMRES 117 92 77 66 64

Time 278.23 246.10 222.75 211.65 213.34

improving convergence with increase in overlap there is a law of diminishing returns, and

overall execution time increases after a minimum, as the cost per iteration rises. In this

table, an exact solver is used on all subdomains, and the coarse grid is 8 x 9.

Table 6 shows the effect of varying the coarse grid density, with exact subdomain solves

and subdomain overlap of 3h. Exceedingly modest coarse grids provide a major improvement

over no coarse grid at all; however, this is a relatively smooth problem. As with the other

parameters, the marginal benefit of effort spent on the coarse grid decreases rapidly and

ultimately reverses as the cost per iteration overtakes improved convergence rate.

Table 7 explores the implementation scalability of the NKS method, as seen over the

range of two successive doublings, from 8 to 16 and from 16 to 32 processors, for three fixed-

size preconditioner combinations (corresponding to the parameter choices in the italicized

columns of the first three tables). Dividing elapsed computation times by the number of

GMRES inner iterations, to obtain an average cost per iteration on this fixed-size problem,

yields the scalability results shown. There is a superunitary relative efficiency for one of

the preconditioners, attributable to more favorable cache blocking. The fixed-size parallel

Table 6: Effect of coarse-grid density - Full Potential problem

Coarse Grid 0x0 2x3 4x5 6x7 8x9

Newton 5 4 5 5 5

GMRES 164 95 98 89 77

Time 373.32 240.82 259.60 245.02 243.24
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Table 7: Fixed-sizescalability results - Full Potential codeon an IBM SP2 (three different
preconditioners)

@ proc.
8

16
32

k = 3 ILU

fill level

sec./iter, rel. eft.

1.92 (1.00)

1.01 0.9.5

0..5.5 0.87

3h subdomain

overlap

sec./iter, rel. eft.

2.89 (1.oo)
1.39 1.04

0.73 0.99

6 × 7 coarse

grid density

sec./iter, rel. eft.

2.75 (1.00)

1.59 0.86

0.89 0.77

efficiencies remain above 75% throughout the preconditioner parameter and granularity range

considered.

3.2 Euler Flow

The problem of inviscid incompressible flow around a two-dimensional four-element airfoil

in landing configuration was studied in terms of convergence rate and parallel performance

in [23], and the same code was converted to NKS form for the present study. The details of

the discretization are left to the original reference. From [23] we consider the vertex-based

discretization with a first-order Roe scheme on the left (out of which we form ,]_), and

a second-order Roe scheme on the right (which defines fhigh). The flow is subsonic (Ma

= 0.2), with an angle of attack of 5 °. Adaptively placed unstructured grids of approximately

6,000 and 16,000 vertices were decomposed into from 1 to 128 load-balanced subdomains,

including all power-of-two granularities in between. We report below on the problem of 6,019

vertices, with four degrees of freedom per vertex (giving 24,076 as the algebraic dimension of

the discrete problem). This is certainly small by parallel computational standards, though

it is probably reasonably adequate in two dimensions from a physical modeling point of

view, since the unstructured grid is not restricted to quasi-uniformity, and mesh cells are

concentrated into small regions between the airfoils requiring the greatest refinement. The

clustering can be seen in Fig. 1, which shows just a near field subset of the grid. (The grid

recedes into the far field with smoothly increasing cell sizes. If the entire grid is is scaled to

the page size, the flaps are too small to be visible.)

Figure 2 compares the convergence histories of the defect correction and NKS solvers,

over a range of time sufficient to that permit the reduction of the residual of the NKS method

to drop to within an order of magnitude of Cm_ch. Both solvers utilize a residual-adaptive

setting of the CFL number (related to the size of the time step 6t in the pseudo-transient

code), known as "switched evolution/relaxation" (SER) [19]. Starting from some small initial

11
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Figure 1: Zoom of the unstructured grid cells in the near field.

CFL number, CFL is adaptively advanced according to:

CFL _+' = CFL t . IF(u) -'ll
Itf(u)'ll "

As Ilf(d)ll --* 0, 6t oe. In practice, it is wise to bound the relative growth of CFL in

any one step by some factor and/or to bound it asymptotically in the range of 10 3 - 10 6

to preserve a modest diagonal dominance for the linear subiterations. Since convergence

is not generally monotonic in [I/(u)ll, CFL may also adaptively decrease, and it should be

ratcheted away from too large a relative decrease, as well.

Both solvers use the same Schwarz preconditioner, namely one-cell overlap and point-

block ILU(0) in each subdomain. NKS is clearly superior to defect correction in convergence

rate, though the cost per iteration is sufficiently high that defect correction is faster in

execution time up to a modest residual reduction. (The cross-over point in the right plot is

at about a reduction of 104 of the initial residual. A polyalgorithm, initially defect correction

then switched to NKS when defect correction prohibits fast growth in CFL, may ultimately

be much faster than either pure algorithm exclusively, as demonstrated for a related problem

in [20], and as found in preliminary experiments for the present problem.) The asymptotic

convergence rate is shown to be linear, since we truncated the Newton iterations well above

the tolerances necessary to guarantee superlinear or quadratic convergence. Improving the

constant in linear convergence is reason enough to use the matrix-free split discretization

method (5). Table 8 compares the performance of the NKS version of the solver across three

doublings of the processor force of the Intel Paragon for this fixed-size problem. The second-

order evaluation of fluxes in fhigh(u) requires that first conserved variables, and later their

fluxes, be communicated across subdomain boundaries each time the routine to evaluate
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Figure 2: Norm of steady-state residual vs. iterations (left) and vs. execution time on 32

nodes of the Intel Paragon (right) for the defect correction scheme (dashed), and the NKS

method (dotted).

the nonlinear residual is called. This imposes an extra communication burden per iteration

on the matrix-free NKS solver, relative to a method that explicitly stores the elements

of the Jacobian. Nevertheless, for residual norm reductions of more than a few orders

of magnitude, the parallelized NKS solver is faster than the parallelized defect correction

solver. The number of subdomains matches the number of processors, so convergence rate of

the preconditioned system degrades slowly with increasing granularity, as coupling is lost in

the preconditioner. However, the number of Krylov vectors per Newton iteration is bounded

(at 2 restart cycles of 25 each), so the data translates directly to parallelization efficiency of

the truncated Newton method.

In this example, no coarse grid is used, but [23] compares the defect correction form

of the algorithm with and without a coarse grid. The coarse grid appears multiplicatively

rather than additively, as in (1). The restriction operator consists of summing subdomain

boundary fluxes and the prolongation operator is essentially piecewise constant subdomain

extension followed by a boundary relaxation process. On the original platform of the Intel

iPSC/2, the convergence rate advantage of the coarse grid is nearly completely cancelled

by the sequential bottleneck. The coarse grid aspect of the preconditioner demands further

attention.
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Table 8: Wall-clock performance and relative parallel efficiency for unstructured Euler code

on an Intel Paragon.

# proc. sec./iter, rel. eft.

4

8

16

32

36.09 (1.00)

19.21 0.94

10.65 0.85

6.25 0.72

4 CONCLUSIONS AND RELATED EXTENSIONS

We have shown that steady aerodynamics problems in two different formulations (full po-

tential and Euler) can be effectively solved, and cost-effectively solved in parallel, by NKS

methods.

The NK technique has been compared with V-cycle multigrid on Euler and Navier-Stokes

problems without parallelizing the preconditioning in [14, 20]. For a subsonic unstructured

grid example, NK trails multigrid in execution time by a factor of only about 1.5. This

penalty can be accepted when it is realized that the NK method has the advantage of doing

all of its computation without generation of a family of coarse unstructured grids (which is

difficult for three-dimensional unstructured grids). This work has been extended to three-

dimensional problems in [20].

Large-scale time-dependent problems suffering from multiple scales often require parallel

implicit algorithms. The KS technique has been shown effective in the unsteady Navier-

Stokes context in [3]. In [3], two of the same parameters explored herein (level of fill in the

local ILU factorizations and subdomain overlap) are varied to produce a Schwarz precondi-

tioner whose strength can be adjusted to adapt to the varying time-evolving ill-conditioning

of the linear system arising at each implicit time step.

A variety of CFD applications are (or have inner) nonlinear elliptically-dominated prob-

lems amenable to solution by NKS algorithms, which are characterized by low storage re-

quirements (for an implicit method) and locally concentrated data dependencies with small

overlaps between the preconditioner blocks. The addition of a global coarse grid in the

Schwarz preconditioner is often effective, where architecturally convenient. A deterrent to

the widespread adoption of NKS algorithms is the large number of parameters that require

tuning. Each component (Newton, Krylov, and Schwarz) has its own set of parameters, the

most important of which, in our experience, is the convergence criterion for the inner Krylov

subiterations. In large-scale, poorly preconditioned problems, including the test problems

of this paper, tunings that guarantee quadratic convergence lead to unacceptable inner it-
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eration counts and/or memory consumption. However, the plethora of parameters can be

exploited, in principle, to produce optimal tradeoffs in space and time for a given problem

class. Though parametric tuning is important to performance, conservative robust choices

are not difficult.
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